Image default
Agriculture Markets

How tobacco could help produce a cheaper anti-malaria drug.

Artemisia detail (Bio-Based World News) A new and inexpensive technique for mass-producing the main ingredient in the most effective treatment for malaria, artemisinin, could help meet global demands for the drug. Artemisinin is produced in low yields by a herb calledArtemisia annuaotherwise known as sweet wormwood and isthe most effective treatment for malaria, In fact, Youyou Tu, won a Nobel Prize for its discovery. The problem is that, despite its effectiveness itstoo expensive to be widely accessible. However, now researchers from the Max Planck Institute of Molecular Plant Physiologyin Germanyhave now discovered a new way to produce artemisinic acid, the molecule from which artemisinin is derived, in high yields.

Their method involves transferring its metabolic pathway the series of biochemical steps involved in its production fromA. annuainto tobacco, a high-biomass crop.Malaria is a devastating tropical disease that kills almost half a million people every year, says contributing author Ralph Bock, Director of the Department for Organelle Biology, Biotechnology and Molecular Ecophysiology.

For the foreseeable future, artemisinin will be the most powerful weapon in the battle against malaria but, due to its extraction from low-yielding plants, it is currently too expensive to be widely accessible to patients in poorer countries. Producing artemisinic acid in a crop such as tobacco, which yields large amounts of leafy biomass, could provide a sustainable and inexpensive source of the drug, making it more readily available for those who need it most.

Cccording to a study to be published in the journal eLife, the team has called this approach to producing more artemisinic acid COSTREL (combinatorial supertransformation of transplastomic recipient lines). The first step in their process was to transfer the genes of the artemisinic acid pathways core set of enzymes into the chloroplast genome of tobacco plants, generating what are known as transplastomic plants. (Editor -We covered the issue of artemisinin in our feature:The Amyris story: veterans of a new industry.)

New methods in plant biotechnology could allow an inexpensive mass-production of a malaria drug. Transfering genes from Artemisisa annua to tobacco leads to a high-yielding production of the naturally occuring artemisinic acid. Fuentes et al., eLife

The team then used their best transplastomic tobacco plant line to introduce an additional set of genes into its nuclear genome, generating the COSTREL lines. These remaining genes encode factors that increase the synthesis, or generation, of the acid in ways that are still largely unknown.

While the artemisinic acid pathway inA. annuais confined to the glandular hairs on the plant, leading to low yields of artemisinin, our COSTREL tobacco lines produce it in their chloroplasts and therefore the whole leaf, says lead author and postdoctoral researcher Paulina Fuentes.

We generated over 600 engineered tobacco plant lines that harbour different combinations of these additional genes, and analysed them in terms of the amounts of artemisinic compounds they acquired. We could then identify those that generated unprecedented levels of 120 milligrams per kilogram of artemisinic acid in their leaves, which can be readily converted into artemisinin through simple chemical reactions.

Although further increases in these production levels will be needed if global demand for artemisinin is to be met, the study lays the foundation for much cheaper production of this life-saving therapy in a high-biomass crop, in contrast to a single medicinal plant.

It also provides a new tool for engineering many other complex pathways, with the potential to increase production of other essential therapeutic ingredients

Bio-Based Live is coming to San Francisco onSeptember 26-27th 2016, for all the latest information and to find out how you can become involved, contact

For bio-based industry innovations like this, take a look at…

USDA announces $21 million for research and development in the bio-economy.

How much are bio-based products worth to the US economy?

15 key recommendations for your bio-based business in 2016.

Iowan report proposes bio-based chemicals tax credit system.

Expert view: Unlocking the promise of Bio-Based plastics.

Related posts

Fashion heavyweights unveil sustainability initiatives to G7.

Liz Gyekye

Algae, the super biofuel that one day will power our cars.

Emily Odowd

BBC covers biodegradable bioplastics made from cactus juice.

Liz Gyekye

Leave a Comment

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More