Image default
Biomass Products Technology

Transforming leftover lignin into carbon fiber for cars and planes.

Carbon-fiber car parts, such as this bumper, could someday be made from waste lignin. Credit: fabiodevilla/  Using plants and trees to make products such as paper or ethanol leaves behind a residue called lignin, a component of plant cell walls. That leftover lignin isnt good for much and often gets burned or dumped into landfills. Now, researchers speaking at the 254thNational Meeting & Exposition of the American Chemical Society (ACS) have showcased how lignin can be transformed into a carbon fiber that can produce a lower-cost material strong enough to build car or aircraft parts.

Lignin is a complex aromatic molecule that is mainly burned to make steam in a biorefinery plant, a relatively inefficient process that doesnt create a lot of value, says Birgitte Ahring, Ph.D., the principal investigator on the project. Finding better ways to use leftover lignin is really the driver here. We want to use biorefinery waste to create value. We want to use a low-value product to create a high-value product, which will make biorefineries sustainable.

In addition, there are potential benefits on the carbon fiber side of the equation. Carbon fiber made with lignin would be more sustainable and less expensive than fibers currently being produced. The carbon fiber found in modern cars and aircraft are typically made from polyarylonitrile (PAN), which is a pricey, non-renewable polymer. PAN can contribute about half of the total cost of making carbon fiber, Jinxue Jiang, Ph.D., says. He is a postdoctoral fellow in the Ahring laboratory at Washington State University.

“Our idea is to reduce the cost for making carbon fiber by using renewable materials, like biorefinery lignin.” Other researchers have tried to make carbon fibers from 100 percent lignin, Jiang says, but ended up with a fiber too weak for the automotive industry. “We wanted to combine the high strength of PAN with the low cost of the lignin to produce an automobile-grade carbon fiber.”

To develop a strong yet cheap carbon fiber, Ahrings team mixed lignin with PAN in varying amounts, from 0 to 50 percent. They melded the polymers together into a single fiber using a process called melt spinning. You elevate the temperature of the polymer blend until it melts, so it can flow, Jiang says. Then, you spin these polymer melts until the fiber forms. Using a variety of methods, including nuclear magnetic resonance spectroscopy, calorimetry and electron microscopy, the researchers evaluated the fibers structural and mechanical characteristics. They found that they could get away with as much as 20-30 percent lignin without sacrificing strength. The lignin carbon fibers could, the researchers say, have automobile applications such as internal parts, castings and tire frames.

As a next step, the researchers will be taking their fibers to an automobile manufacturing plant to test their strength in a real-world scenario. If we can manage to get a fiber that can be used in the automobile industry, we will be in a good position to make biorefineries more economically viable, so they can sell what they usually would discard or burn, Ahring says. And the products would be more sustainable and less expensive.

Funding for the research delivered at the 254thNational Meeting & Exposition of the American Chemical Society (ACS)comes from theNational Science FoundationCenter for Bioplastics and Biomaterials along withFordandHyundaiMotor Companies.

You may also be interested in these bio-based developments …

How UPM Biochemicals are maximising the opportunity found in our forests.

Avantium collaborates with four industry experts to convert wood into a biochemical.

$5.8 billion invested by VCs in bio-based chemicals; focus shifts to disruptive synthetic biology.

Plans underway to scale uptech that transforms microalgae into bio-based chemicals.

Related posts

5 minutes with… Omer Emran, Product Manager Environmental Innovation, Tetra Pak.

Emily Odowd

DuPont and Unifi join together to create eco-friendly cold-weather apparel insulation.

Luke Upton

Breakthrough reached that can boost enzyme effectiveness by 30-times, say scientists.

Dave Songer

Leave a Comment

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More